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ABSTRACT 

The dimension-free L2-maximal inequality for convex symmetric bodies ob- 
tained in [2] is extended for p > ~. 

1. Introduction 

The results presented here are a continuation of the work [7], [2], [3] on the 

behavior of high dimensional maximal functions. Let B be a convex symmetric 

body in R" and define the corresponding maximal function 

M [ ( x ) = M s f ( x ) = s u p  ~ If(x +ty) ldY ; f ~ L~(Rn).  
t>O 

The main result of [2] asserts then the existence of an absolute constant D 

satisfying 

(1) II M d  ILL',.., ---- O II [ IIL,,.., 

which we write shortly II Ms 11~2 --< O. Of course, by interpolation and the obvious 

L=-bound, (1) also implies 

(2) II MB IIp--p ~ D if 2 =< p =< oo. 

This paper deals with the dependence of the bounds when p < 2. Consider the 

"diadic" maximal operator 

1 
M , f ( x )  = sup,.z ~VolB f s  t f (x + 2'y)t dy. 
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Obviously M j f  <= Mr. The following fact is shown in the next section. 

THEOREM 1. For 1 < p < ~z there is a constant Cp such that 

(3) llMifltp <-- c.Ilfll. 

and where C, is independent of the body B and the dimension n. 

Theorem 1 is exploited to derive 

THEOREM 2. For p > ~, there is a constant C'p satisfying 

(4) Ilmfll~ = IIM.fli. --< c;llfltp 

and which is again independent of B and the dimension n. 

This result brings further progress on the problems considered in [7], where 

these investigations were initiated. 
Theorem 2 is easily deduced from Theorem 1 and the next lemma, proved in 

Section 3. 

LEMMA 1. If. l < q < p < = 2  a n d p > 3 / ( l + l / q ) ,  then 

II M IIp~ --< C(p, q )11 M, II~'~; 1,2'/('/q-'/z). 

In the proofs of both Theorem 1 and Lemma 1, Fourier analysis will be 

essentially used. 
Denote (P,),>o the Poisson semigroup on R", thus /~,(~)= e -'leJ. Recall the 

maximal and g-function inequalities (see [4], section 2) for 1 < p < ~: 

suplf * e,l [t <-- c ( p -  1)-'llfll., (5) 
t - O  p 

(6) <= C ( p  - 1)-IItfll~ 

where u(x, t) = ([ * P,)(x)  and C is a constant independent of the dimension n. 

REMARKS. (1) In several cases, the restriction p > 3/(1 + q-') in Lemma 1 can 

be relaxed, improving on the condition p >-~ in Theorem 2. 
(2) The author has previously proved Theorem 1 for the special case of the 

Cartesian cubes i 1 ,  [-~,~]. In this argument, geometric properties of the cube 

played a r61e. 
(3) The numbers II MIIp~ and II M, IIp_p are preserved when replacing the body  
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B by an atfine image v(B), v EGL(R") .  For instance, 

Mo,n,f = M s ( f  ° v )o (v-'). 

Hence, by the results of [2], we may and do assume that the Fourier transform of 

the indicator function X, satisfies the properties 

C(Z" I¢1)-', 

11 -,fB(¢)l_-< CL • I~[ 

(7) 

(8) 

and 

(9) [ (V,f~ (so), s¢)[ _-< C, for all s c U R" 

where L = L (B) is a number dependent on B. Here and in the sequel, the letter 

C will always stand for absolute constants. 

Only properties (7), (8), (9) will be used in proving Theorems 1 and 2 (cf. 
remark at the end related to the limitations of this method). 

2. The estimates for the diadic maximal operator 

In this section, Theorem 1 will be derived. Let the body B be fixed and assume 

(7), (8), (9) valid. Our purpose is to prove a priori inequalities on the numbers 

A(p ,q )  defined as the best constant fulfilling the inequality 

where in general K,(x)  = t -"K( t - 'x ) .  Here 1 < p < ~ and 1 _-< q <_- ~. Theorem 1 

thus consists in finding an absolute bound for A ( p ) = - A ( p , ~ ) ,  which is a 

decreasing function of p on ]1,~]. Of course, we may suppose ~ _-> 0 in (10). Note 

that by duality 

(11) A ( p , 1 ) =  A ( p ' , ~ )  

and by the interpolation property (see [1] for instance) L ~ = [L t~, L~',],2,2, also 

(12) A (p,2) =< A (p, 1)mA (p, ~)~,z. 

Suppose p _--- 2. By (11), (12) and (2) asserting that A (p ' ,~)  =< D, we may write 

(13) A (p,2) < D'/2A (p,~)~,2. 

This fact will be essentially exploited in the sequel. 

The aim of the following reasoning is to get a reverse inequality, estimating 
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A (q) in terms of A(p,2) for p < q. Define K = XB - PL with L as in (7), (8). Fix a 
positive integer s. Then 

(14) 

denoting 

M , I  = sup II * (x~)~' I j~z 

IA~ * g2i[ 2 ) + [gJ* g2/ I  2 + stup 1 / *  P,[ 

Ai[= (f * PL.2,-')-- ([ * PL.2, +,) and g/= f - Aj[. 

We analyse the contributions of the three terms in the right member of (14). By 
definition 

I ( ~  [Ajf* K2~ 12) 1/2 ]p< a (p,2)l[ (~ .  ]A~f[ 2)1/2 Ir 
(15) 

Since 

JL2 j-s 

it follows from the Cauchy-Schwartz inequality and (6) that 

1,2 L 2 , . .  2 

IA,/12 =< C ( p  - 1)-'s II/ll,. 
P 

A similar estimate holds for the second term in (15). Thus, denoting /z the 
Lebesgue measure on R n, 

(16) /z IAJ*K2,12) >X <--CCA(p,2)(p-X)-'sX-'II/II, Y', A>0.  

By Parseval's identity 

• ~. )1/2 {f If(~)12[~ll-e-2J-'Llel+e-ZJ÷'L~ll21"(2i~)lzldl~} ''2" 
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(18) becomes 

Choosing 

• / .~ (x - ' l l f '  112) 2 
s - ,og 1~ t.  (~t- ' l l f '  II.)" ) ' 

~ ] <= C ( p  - 1)-~A (p, 2)9 [ log [ ~ (A -'11 f~ 112) 2 % ] ~ . - ' , .  [M , f  \ " ( ;~ - ' l l f "  II, Y' 1 / "  " "  I1,~. 
/x 

From the inequality 

log x <- C¢-I x " (x > 2, ~" > O) 

we get for fixed 1-> 0 using also (13) 

(19) )t 49 . [Mt f  > h l <-- C (p  - 1 ) - '~ ' - "a (py"2 l t f l l~ " l l f l l ;  - " "  

[ g ( ¢ ) J ~ C - l +  t ~12 

one easily checks the pointwise inequality 

~ J l  - e - V - ' L l ' f  + e-~'"L*'MI21 g(2'#)12_- < C2-" 
1 

where c > 0 is some constant. So 

j (  ,,,2 2-" ii=c 
(17) /~ 2 g, * r2,12) > x] < c(2-"x-'llfll~) 2. 

From (5) the distributional inequality on the last term in (14) is immediate. From 
the estimates (16), (17) there follows 

(18) Iz[Mlf  > A] < C[A (p,2)(p - 1)-'sX-'llfll.] . + c[2-"x-'llfll2l 2. 

Since If * (XB), I -<- [[fJl®, we may replace in the right member of (18)the function f 
by 

f *  = f X  llfl>.~lZl . 

Notice that since p < 2 

(a- ' l lf '  JJ2)=__> ~ -2 I f ' l ,>-c(X- ' l l f ' l l , )" .  
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where 

q = p + p(2 - p)r. 

Introducing the Lorentz-norms Lq'~(R n) and Lq~(R"), (19) means that 

II Mlf  IIq.o ---- C(p - 1)-"q(q - p)-P/qA (p)p/2q Ilfll.,/ 

Hence, applying the Marcinkiewicz interpolation theorem for suitable values 

of q in the previous inequality, 

(20) II M, fll. --<- C(p - 1) '(q - p ) - 2 A  (p)"2ll[ll~ (2 => q > p > 1) 

It follows from the definition of the numbers A ( q )  and (20) that 

(21) A (q) <= C(p - 1)-'(q - p)-gA (p),/2. 

From this fact the proof of Theorem 1 will easily be completed. It is easily seen 

that sup~<p~2 (p - 1)A (p) < ~ (from [7] this expression can in fact be bounded by 

log n). 
Denote T the smallest constant such that A ( p )  < T ( p -  1) -6 and choose /~ 

satisfying A (16)>-~ T( /~-  1) -6. If in (21) we let q =/5 and p = ½(1 + p), then 

Tip _ 1)_6~ C(p - 1)-3A (p),/2< C(p - 1)-3T'/2(p - 1) -3 

from whence 

T < C ' .  

This ends the proof of Theorem 1. 

3. Proof of Lemma 1 

For r = 1,2,. . . ,  define the auxiliary maximal operators 

M,[ = ,~I, Vol B ' = s u p ~  f (x  + ty)dy where L = {2 j/' ' j E Z} and f > 0. 

For r = 1, the diadic maximal operator considered above is obtained. Further 

(22) Mf = Jim M,f <= Ml f  + ,~= - M:,f I. 

'By convexity and definition of II I[q.t, it suffices to check this for f of the form [A I-"q)t'A. But then, 
this is just (19). 
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It is easily verified that 

(23) lMJ-M' f l<- - sup  V - - ~  [f(x +t2';2'Y)-f(x +ty)]dY " 
t E l r  • 

From (22) and interpolation,  it follows for 1 < q < p =< 2, p ~ = (1 - O)q-' + 0½, 

s ~ l  I 0 t 0 IIMII,-,<=IIM, II,~,+ II M~, ll,~,ll M=, I1-~-=, (24) 

defining 

M'. /=  sup p [x~ - (x.)2',2. ], * f l. 
t~:l ,  

Splitting I, = U ] ~ .  I~, "~, I~, °~= {2;/ ' ;j  c r Z +  a}, it is clear that 

IIM.f I1~ -<- ~11 M, II.~llfll. 
and therefore  also 

(25) II M;II.-. =< 2rll M, I1.~. 

To obtain the LZ-bound, we invoke the following majorat ion proved by Fourier  

analysis (see [2]). 

LEMMA 2. Consider a kernel K @ L~(R ") and introduce the quantities 

a ; =  sup Ig (~ ) t ;  t3,= sup I(vt ; : (¢) ,¢) l  O ~ Z ) .  
2i_<1~¢1<2i+1 2i ~I,~[<2i+L 

Then 

(26) sup,>, if  * K, I ~_ <= CF(K)IIflI2 

where 

K, (x)=t-"K( t  'x) and F(K)= jc ,~  ,/2. a ;  ~a; +/3j) ';2. 

Of course we apply this lemma for K = K, = h'B -- (Xo)2 ~'2'. From (7), (8) and 

(9), we easily get 

f1 
21/2r 

IR(~)I  = I)~. (~:)- .~.(2"z '£)f  =< I(Vf((t!f),~)tdt < Cr-', 

I g(~)l  = l i . (~)l  + I ~. (2"2'~)1 = c(I ~ IL)-', 

I g ( ~ ) l  =< I1 - ~.(~)1 +11 - ~ .  (2';2'~)1 <= C I ~ IL, 
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F,~,~ c ~ m i n ( ~ _ -  _ L2' ),2 ~ c ' o ~ ,  
~=-. ' 1 + L 24i = XFr ' 

M' C log r 
( 2 7 )  II .112~2--< XFr" 

Substituting (25), (27) in (24) we get 

Ilmll._~_- < C 2 *  "' M, II '-° < C(p.q)llM, II.-. q ~ q  

provided 0 > ,], which is the condition p > 3/(1 + 1/q). QED 

REMARKS. (4) The method applied above in itself does not allow one to 

remove the restriction p > 3 appearing in the statement o f  Theorem 2. Indeed, 

only properties on the kernel K, 

K_->0, 

I g ( # ) l ~  I#l-'; [ (1-  g(~))l-< I~r, 

I(VK(£) ,£)[  < C, 

were exploited. 
If K now stands for the normalized surface measure of the 2-sphere S t~ in R 3, 

previous conditions are fulfilled while the maximal operator 

Ms[ = sup f I[(x + ty)l or(dy) (o" = surface measure) 

is unbounded on the space Lm(R 3) (see [5]). 

(5) If now the conditions on K listed in (4) are replaced by 

K=>0, 

lg(g)l~Al~l-"; 11- g(~)l-<- Alel, 

I<vg(¢),~)l-<- A. 

where 1,1 = 1,2 . . . . .  then more generally for p > (rl 2 + 4rl - 2)/(~ 2 + 2rl - 1), 

(=~) Ilsu~ I,* ~ a tl ~ " a  ~)ll,n~ II z>0  p 

where 4,(A,p) does not depend on the dimension. The proof of (28) is an easy 



Vol. 54, 1986 MAXIMAL FUNCTIONS 265 

modification of Lemma 2 in this paper, involving the higher derivatives 

a"'g,l(atL 
From (28), Theorem 2 may be improved in various cases. If. for instance, 

we get 

B = B, = [x ER~;~,x~ '<= 1] (s = 1,2 . . . .  ) 

]lM~frl, < C(p,s)f l f l lp if p > 1 

extending the results of [7] (section 4). 

It turns out however that the condition 

mr :l --" 

(Vol B = 1, A bounded for increasing dimension) is already quite restrictive for 

the geometry of B. 
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