ON THE L^{p} -BOUNDS FOR MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES IN \mathbf{R}^{n}

BY

J. BOURGAIN Institut des Hautes Etudes Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France

ABSTRACT

The dimension-free L^2 -maximal inequality for convex symmetric bodies obtained in [2] is extended for $p > \frac{3}{2}$.

1. Introduction

The results presented here are a continuation of the work [7], [2], [3] on the behavior of high dimensional maximal functions. Let B be a convex symmetric body in \mathbb{R}^n and define the corresponding maximal function

$$Mf(x) = M_B f(x) = \sup_{t>0} \frac{1}{\operatorname{Vol} B} \int_B |f(x+ty)| \, dy; \qquad f \in L^1_{\operatorname{loc}}(\mathbf{R}^n).$$

The main result of [2] asserts then the existence of an absolute constant D satisfying

(1)
$$||M_B f||_{L^2(\mathbf{R}^n)} \leq D ||f||_{L^2(\mathbf{R}^n)}$$

which we write shortly $||M_B||_{2\to 2} \leq D$. Of course, by interpolation and the obvious L^{∞} -bound, (1) also implies

(2)
$$||M_B||_{p\to p} \leq D$$
 if $2 \leq p \leq \infty$.

This paper deals with the dependence of the bounds when p < 2. Consider the "diadic" maximal operator

$$M_1f(x) = \sup_{j \in \mathbb{Z}} \frac{1}{\operatorname{Vol} B} \int_B |f(x+2^j y)| \, dy.$$

Received August 27, 1985 and in revised form December 4, 1985

Obviously $M_1 f \leq M f$. The following fact is shown in the next section.

THEOREM 1. For $1 \le p \le \infty$, there is a constant C_p such that

$$\|M_1 f\|_p \leq C_p \|f\|_p$$

and where C_p is independent of the body B and the dimension n.

Theorem 1 is exploited to derive

THEOREM 2. For $p > \frac{3}{2}$, there is a constant C'_p satisfying

(4)
$$\|Mf\|_{p} = \|M_{B}f\|_{p} \leq C'_{p}\|f\|_{p}$$

and which is again independent of B and the dimension n.

This result brings further progress on the problems considered in [7], where these investigations were initiated.

Theorem 2 is easily deduced from Theorem 1 and the next lemma, proved in Section 3.

LEMMA 1. If $1 < q < p \le 2$ and p > 3/(1 + 1/q), then $\|M\|_{p \to p} \le C(p,q) \|M_1\|_{q \to q}^{(1/p - 1/2)/(1/q - 1/2)}$.

In the proofs of both Theorem 1 and Lemma 1, Fourier analysis will be essentially used.

Denote $(P_t)_{t>0}$ the Poisson semigroup on \mathbb{R}^n , thus $\hat{P}_t(\xi) = e^{-t|\xi|}$. Recall the maximal and g-function inequalities (see [4], section 2) for 1 :

(5)
$$\left\| \sup_{t>0} |f * P_t| \right\|_p \leq C(p-1)^{-1} ||f||_p, \\ \left\| \left\{ \int_0^\infty \left| \frac{\partial P_t}{\partial t} f \right|^2 t dt \right\}^{1/2} \right\|_p \leq \left\| \left\{ \int_0^\infty |\nabla u(x,t)|^2 t dt \right\}^{1/2} \right\|_{L^p(dx)} \\ \leq C(p-1)^{-1} ||f||_p$$

where $u(x, t) = (f * P_i)(x)$ and C is a constant independent of the dimension n.

REMARKS. (1) In several cases, the restriction $p > 3/(1 + q^{-1})$ in Lemma 1 can be relaxed, improving on the condition $p > \frac{3}{2}$ in Theorem 2.

(2) The author has previously proved Theorem 1 for the special case of the Cartesian cubes $\left[-\frac{1}{2},\frac{1}{2}\right]^n$. In this argument, geometric properties of the cube played a rôle.

(3) The numbers $||M||_{p\to p}$ and $||M_1||_{p\to p}$ are preserved when replacing the body

B by an affine image v(B), $v \in GL(\mathbb{R}^n)$. For instance,

$$M_{\nu(B)}f = M_B(f \circ v) \circ (v^{-1})$$

Hence, by the results of [2], we may and do assume that the Fourier transform of the indicator function χ_B satisfies the properties

(7) $|\hat{\chi}_B(\xi)| \leq C(L \cdot |\xi|)^{-1},$

(8)
$$|1 - \hat{\chi}_B(\xi)| \leq CL \cdot |\xi|$$

and

(9)
$$|\langle \nabla \hat{\chi}_B(\xi), \xi \rangle| \leq C$$
, for all $\xi \in \mathbf{R}^n$

where L = L(B) is a number dependent on B. Here and in the sequel, the letter C will always stand for absolute constants.

Only properties (7), (8), (9) will be used in proving Theorems 1 and 2 (cf. remark at the end related to the limitations of this method).

2. The estimates for the diadic maximal operator

In this section, Theorem 1 will be derived. Let the body B be fixed and assume (7), (8), (9) valid. Our purpose is to prove *a priori* inequalities on the numbers A(p,q) defined as the best constant fulfilling the inequality

(10)
$$\left\| \left(\sum_{j} |f_{j} * (\chi_{B})_{2^{j}}|^{q} \right)^{1/q} \right\|_{p} \leq A(p,q) \left\| \left(\sum |f_{j}|^{q} \right)^{1/q} \right\|_{p}$$

where in general $K_i(x) = t^{-n}K(t^{-1}x)$. Here $1 and <math>1 \le q \le \infty$. Theorem 1 thus consists in finding an absolute bound for $A(p) \equiv A(p,\infty)$, which is a decreasing function of p on $]1,\infty]$. Of course, we may suppose $f_i \ge 0$ in (10). Note that by duality

(11)
$$A(p,1) = A(p',\infty)$$

and by the interpolation property (see [1] for instance) $L_{l^2}^p = [L_{l^*}^p, L_{l^1}^p]_{1/2,2}$, also

(12)
$$A(p,2) \leq A(p,1)^{1/2} A(p,\infty)^{1/2}.$$

Suppose $p \leq 2$. By (11), (12) and (2) asserting that $A(p', \infty) \leq D$, we may write

(13)
$$A(p,2) \leq D^{1/2} A(p,\infty)^{1/2}$$

This fact will be essentially exploited in the sequel.

The aim of the following reasoning is to get a reverse inequality, estimating

J. BOURGAIN

A(q) in terms of A(p,2) for p < q. Define $K = \chi_B - P_L$ with L as in (7), (8). Fix a positive integer s. Then

(14)
$$M_{1}f = \sup_{j \in \mathbb{Z}} |f * (\chi_{B})_{2^{j}}| \\ \leq \left(\sum_{j} |\Delta_{j}f * K_{2^{j}}|^{2}\right)^{1/2} + \left(\sum_{j} |g_{j} * K_{2^{j}}|^{2}\right)^{1/2} + \sup_{t > 0} |f * P_{t}|$$

denoting

 $\Delta_i f = (f * P_{L \cdot 2^{j-1}}) - (f * P_{L \cdot 2^{j+1}}) \quad \text{and} \quad g_j = f - \Delta_j f.$

We analyse the contributions of the three terms in the right member of (14). By definition

(15)
$$\left\| \left(\sum_{j} |\Delta_{j}f * K_{2^{j}}|^{2} \right)^{1/2} \right\|_{p} \leq A(p,2) \left\| \left(\sum_{j} |\Delta_{j}f|^{2} \right)^{1/2} \right\|_{p} + \left\| \left(\sum_{j} (P_{2^{j}} * \Delta_{j}f)^{2} \right)^{1/2} \right\|_{p} \right\|_{p}$$

Since

$$\Delta_{i}f=\int_{L2^{i-s}}^{L2^{i+s}}\left(\frac{\partial P_{i}}{\partial t}f\right)dt,$$

it follows from the Cauchy-Schwartz inequality and (6) that

$$\left(\sum |\Delta_{i}f|^{2}\right)^{1/2} \leq \left\{\sum \left(\int_{L^{2^{j+s}}}^{L^{2^{j+s}}} \left|\frac{\partial P_{i}}{\partial t}f\right|^{2}tdt\right)\left(\int_{L^{2^{j+s}}}^{L^{2^{j+s}}}\frac{dt}{t}\right)\right\}^{1/2}$$
$$\leq Cs\left(\int_{0}^{\infty} \left|\frac{\partial P_{i}}{\partial t}f\right|^{2}tdt\right)^{1/2},$$
$$\left\|\left(\sum |\Delta_{j}f|^{2}\right)^{1/2}\right\|_{p} \leq C(p-1)^{-1}s \|f\|_{p}.$$

A similar estimate holds for the second term in (15). Thus, denoting μ the Lebesgue measure on \mathbb{R}^n ,

(16)
$$\mu\left[\left(\sum |\Delta_{j}f * K_{2^{j}}|^{2}\right)^{1/2} > \lambda\right] \leq C(A(p,2)(p-1)^{-1}s\lambda^{-1}||f||_{p})^{p}, \quad \lambda > 0.$$

By Parseval's identity

$$\left\| \left(\sum_{j} |g_{j} * K_{2^{j}}|^{2} \right)^{1/2} \right\|_{2}$$

= $\left(\sum_{j} ||g_{j} * K_{2^{j}}||^{2} \right)^{1/2} \left\{ \int |\hat{f}(\xi)|^{2} \left[\sum_{j} |1 - e^{-2^{j-s_{L}|\xi|}} + e^{-2^{j+s_{L}|\xi|}} |^{2} |\hat{K}(2^{j}\xi)|^{2} \right] d\xi \right\}^{1/2}$

Since, by (7), (8),

$$|\hat{K}(\xi)| \leq C - \frac{L|\xi|}{1+L^2|\xi|^2}$$

one easily checks the pointwise inequality

$$\sum_{j} |1 - e^{-2^{j-s_{L}}|\xi|} + e^{-2^{j+s_{L}}|\xi|}|^{2} |\hat{K}(2^{j}\xi)|^{2} \leq C2^{-cs}$$

where c > 0 is some constant. So

(17)
$$\left\| \left(\sum |g_{j} * K_{2^{j}}|^{2} \right)^{1/2} \right\|_{2} \leq C2^{-cs} \|f\|_{2},$$
$$\mu \left[\left(\sum |g_{j} * K_{2^{j}}|^{2} \right)^{1/2} > \lambda \right] < C(2^{-cs}\lambda^{-1} \|f\|_{2})^{2}.$$

From (5) the distributional inequality on the last term in (14) is immediate. From the estimates (16), (17) there follows

(18)
$$\mu[M_1 f > \lambda] \leq C[A(p,2)(p-1)^{-1} s \lambda^{-1} ||f||_p]^p + C[2^{-cs} \lambda^{-1} ||f||_2]^2.$$

Since $|f * (\chi_B)_\iota| \leq ||f||_{\infty}$, we may replace in the right member of (18) the function f by

$$f^{\lambda} = f \chi_{[|f| > \lambda/2]}.$$

Notice that since p < 2

$$(\lambda^{-1} \| f^{\lambda} \|_2)^2 \geq \lambda^{-2} \left(\frac{\lambda}{2}\right)^{2-p} \int | f^{\lambda} |^p \geq c (\lambda^{-1} \| f^{\lambda} \|_p)^p.$$

Choosing

$$s \sim \log\left(C\frac{(\lambda^{-1}||f^{\lambda}||_{2})^{2}}{(\lambda^{-1}||f^{\lambda}||_{p})^{p}}\right),$$

(18) becomes

$$\mu[M_1f > \lambda] \leq C(p-1)^{-p}A(p,2)^{p} \left[\log \left(C \frac{(\lambda^{-1} \| f^{\lambda} \|_{2})^{2}}{(\lambda^{-1} \| f^{\lambda} \|_{p})^{p}} \right) \right]^{p} (\lambda^{-1} \| f^{\lambda} \|_{p})^{p}.$$

From the inequality

$$\log x \leq C \tau^{-1} x^{\tau} \qquad (x > 2, \tau > 0)$$

we get for fixed $\tau > 0$ using also (13)

(19)
$$\lambda^{q} \mu [M_{1}f > \lambda] \leq C(p-1)^{-p} \tau^{-p} A(p)^{p/2} ||f||_{2}^{2pr} ||f||_{p}^{p-rp^{2}}$$

where

$$q = p + p(2 - p)\tau$$

Introducing the Lorentz-norms $L^{q,1}(\mathbf{R}^n)$ and $L^{q,\infty}(\mathbf{R}^n)$, (19) means that

$$\|M_1f\|_{q,\infty} \leq C(p-1)^{-p/q}(q-p)^{-p/q}A(p)^{p/2q}\|f\|_{q,1}$$

Hence, applying the Marcinkiewicz interpolation theorem for suitable values of q in the previous inequality,

(20)
$$||M_1f||_q \leq C(p-1)^{-1}(q-p)^{-2}A(p)^{1/2}||f||_q$$
 $(2 \geq q > p > 1).$

It follows from the definition of the numbers A(q) and (20) that

(21)
$$A(q) \leq C(p-1)^{-1}(q-p)^{-2}A(p)^{1/2}$$

From this fact the proof of Theorem 1 will easily be completed. It is easily seen that $\sup_{1 \le p \le 2} (p-1)A(p) \le \infty$ (from [7] this expression can in fact be bounded by $\log n$).

Denote T the smallest constant such that $A(p) \leq T(p-1)^{-6}$ and choose \bar{p} satisfying $A(\bar{p}) > \frac{1}{2}T(\bar{p}-1)^{-6}$. If in (21) we let $q = \bar{p}$ and $p = \frac{1}{2}(1+\bar{p})$, then

$$\frac{T}{2}(\bar{p}-1)^{-6} \leq C(\bar{p}-1)^{-3}A(p)^{1/2} \leq C(\bar{p}-1)^{-3}T^{1/2}(p-1)^{-3}$$

from whence

$$T \leq C'$$

This ends the proof of Theorem 1.

3. Proof of Lemma 1

For r = 1, 2, ..., define the auxiliary maximal operators

$$M_{r}f = \sup_{t \in I_{r}} \frac{1}{\operatorname{Vol} B} \int_{B} f(x + ty) dy \quad \text{where } I_{r} = \{2^{j/r}; j \in \mathbb{Z}\} \quad \text{and} \quad f \ge 0.$$

For r = 1, the diadic maximal operator considered above is obtained. Further

(22)
$$Mf = \lim_{r \to \infty} M_r f \leq M_1 f + \sum_{s=0}^{\infty} |M_{2^{s+1}} f - M_{2^s} f|.$$

[†]By convexity and definition of $\| \|_{q,1}$, it suffices to check this for f of the form $|A|^{-1/q}\chi_A$. But then, this is just (19).

It is easily verified that

(23)
$$|M_{2}f - M_{f}| \leq \sup_{t \in I_{r}} \left| \frac{1}{\operatorname{Vol} B} \int_{B^{t}} [f(x + t2^{1/2}y) - f(x + ty)] dy \right|.$$

From (22) and interpolation, it follows for $1 < q < p \leq 2$, $p^{-1} = (1 - \theta)q^{-1} + \theta_2^1$,

(24)
$$||M||_{p\to p} \leq ||M_1||_{p\to p} + \sum_{s=0}^{\infty} ||M'_{2^s}||_{q\to q}^{1-\theta} ||M'_{2^s}||_{2\to 2}^{\theta},$$

defining

$$M'_{I}f = \sup_{i \in I_{I}} |[\chi_{B} - (\chi_{B})_{2^{1/2}}]_{i} * f|.$$

Splitting $I_r = \bigcup_{\alpha=0}^{r-1} I_r^{(\alpha)}$, $I_r^{(\alpha)} = \{2^{j/r}; j \in r\mathbb{Z} + \alpha\}$, it is clear that

$$\|M_r f\|_q \leq r \|M_1\|_{q \to q} \|f\|_q$$

and therefore also

$$\|M'_{r}\|_{q \to q} \leq 2r \|M_{1}\|_{q \to q}.$$

To obtain the L^2 -bound, we invoke the following majoration proved by Fourier analysis (see [2]).

LEMMA 2. Consider a kernel $K \in L^1(\mathbb{R}^n)$ and introduce the quantities

$$\alpha_j = \sup_{2^j \leq |\xi| < 2^{j+1}} \left| \hat{K}(\xi) \right|; \quad \beta_j = \sup_{2^j \leq |\xi| < 2^{j+1}} \left| \langle \nabla \hat{K}(\xi), \xi \rangle \right| \qquad (j \in \mathbb{Z}).$$

Then

(26)
$$\left\|\sup_{t>0}\left|f*K_{t}\right|\right\|_{2} \leq C\Gamma(K)\|f\|_{2}$$

where

$$K_t(x) = t^{-n}K(t^{-1}x)$$
 and $\Gamma(K) = \sum_{j \in \mathbb{Z}} \alpha_j^{1/2}(\alpha_j + \beta_j)^{1/2}$.

Of course we apply this lemma for $K = K_r = \chi_B - (\chi_B)_{2^{1/2}r}$. From (7), (8) and (9), we easily get

$$\begin{aligned} |\hat{K}(\xi)| &= |\hat{\chi}_{B}(\xi) - \hat{\chi}_{B}(2^{1/2r}\xi)| \leq \int_{1}^{2^{1/2r}} |\langle \nabla \hat{\chi}(t\xi), \xi \rangle| \, dt < Cr^{-1}, \\ |\hat{K}(\xi)| &\leq |\hat{\chi}_{B}(\xi)| + |\hat{\chi}_{B}(2^{1/2r}\xi)| \leq C(|\xi|L)^{-1}, \\ |\hat{K}(\xi)| &\leq |1 - \hat{\chi}_{B}(\xi)| + |1 - \hat{\chi}_{B}(2^{1/2r}\xi)| \leq C|\xi|L, \end{aligned}$$

and hence

(27)

$$\Gamma(K_r) \leq C \sum_{j=-\infty}^{\infty} \min\left(\frac{1}{2}, \frac{L2^j}{1+L^2 4^j}\right)^{1/2} \leq C \frac{\log r}{\sqrt{r}},$$

$$\|M_r'\|_{2\to 2} \leq C \frac{\log r}{\sqrt{r}}.$$

Substituting (25), (27) in (24) we get

$$\|M\|_{p\to p} \leq C \bigg\{ \sum_{s=0}^{\infty} 2^{s(1-\theta)} \bigg(\frac{s^2}{2^s} \bigg)^{\theta/2} \bigg\} \|M_1\|_{q\to q}^{1-\theta} \leq C(p,q) \|M_1\|_{q\to q}^{1-\theta}$$

provided $\theta > \frac{2}{3}$, which is the condition p > 3/(1 + 1/q).

REMARKS. (4) The method applied above in itself does not allow one to remove the restriction $p > \frac{3}{2}$ appearing in the statement of Theorem 2. Indeed, only properties on the kernel K,

$$K \ge 0,$$
$$|\hat{K}(\xi)| \le |\xi|^{-1}; \qquad |(1 - \hat{K}(\xi))| \le |\xi|,$$
$$|\langle \nabla K(\xi), \xi \rangle| < C,$$

were exploited.

If K now stands for the normalized surface measure of the 2-sphere $S^{(2)}$ in \mathbb{R}^3 , previous conditions are fulfilled while the maximal operator

$$M_{s}f = \sup_{t>0} \int |f(x + ty)| \sigma(dy)$$
 (σ = surface measure)

is unbounded on the space $L^{3/2}(\mathbb{R}^3)$ (see [5]).

(5) If now the conditions on K listed in (4) are replaced by

$$K \ge 0,$$

$$|\hat{K}(\xi)| \le A |\xi|^{-\eta}; \qquad |1 - \hat{K}(\xi)| \le A |\xi|,$$

$$|\langle \nabla \hat{K}(\xi), \xi \rangle| \le A,$$

where $\eta = 1, 2, ...,$ then more generally for $p > (\eta^2 + 4\eta - 2)/(\eta^2 + 2\eta - 1)$,

(28)
$$\sup_{t>0} |f * K_t| \Big\|_{p} \leq \phi(A, p) ||f||_{p},$$

where $\phi(A, p)$ does not depend on the dimension. The proof of (28) is an easy

OED

modification of Lemma 2 in this paper, involving the higher derivatives $\partial^{(j)} \hat{K}_t / (\partial t)^j$.

From (28), Theorem 2 may be improved in various cases. If, for instance,

$$B = B_s = [x \in \mathbf{R}^n; \Sigma x_i^{2s} \le 1]$$
 (s = 1,2,...)

we get

$$\|M_B f\|_p \leq C(p, s) \|f\|_p$$
 if $p > 1$

extending the results of [7] (section 4).

It turns out however that the condition

$$|\hat{\chi}_B(\xi)| \leq A |\xi|^{-2}$$

(Vol B = 1, A bounded for increasing dimension) is already quite restrictive for the geometry of B.

References

1. J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer, 1976.

2. J. Bourgain, On high dimensional maximal functions associated to convex bodies, preprint IHES; Amer. J. Math., to appear.

3. J. Bourgain, Estimation de certaines fonctions maximales, C. R. Acad. Sci. Paris, to appear.

4. E. M. Stein, *Topics in Harmonic Analysis*, Ann. Math. Studies No. 63, Princeton University Press, 1970.

5. E. M. Stein, Maximal functions, spherical means, Proc. Nat. Acad. Sci. USA 73 (1976), 2174-2175.

6. E. M. Stein, Some results in harmonic analysis in \mathbb{R}^n , for $n \to \infty$, Bull. Amer. Math. Soc. 9 (1983), 71-73.

7. E. M. Stein and J. O. Stromberg, Behavior of maximal functions in Rⁿ for large n, Ark. Mat.